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Abstract 

Dynamical X-ray diffraction is studied on the basis 
of a theory presented by Fukamachi & Kawamura 
[Acta Cryst. (1993), A49, 384-388], which takes 
account of Borrmann absorption and is applicable 
even when the real part of that atomic scattering 
factor is zero. Rocking curves and integrated reflec- 
ting powers are calculated in both the symmetric and 
the asymmetric Laue cases. A nontransparent effect 
is found in the rocking curves of the transmitted 
beam. An enhancement of abnormal transmission 
intensity is found in the asymmetric case. The 
Pendell6"sung fringes observed in the rocking curves 
and the integrated reflecting powers are studied and 
the precision of the crystal structure factors 
determined from the Pendell6"sung fringes is dis- 
cussed. 

1. Introduction 

In studies of X-ray dynamical theory, most workers 
have paid attention to the case where the real part of 
the atomic scattering factors is much larger than the 
imaginary part. By tuning X-ray energy from 
synchrotron radiation, it becomes possible to 
measure the dynamical diffraction when the imagin- 
ary part of the atomic scattering factor is larger than 
the real part (Fukamachi et al., 1993). Fukamachi & 
Kawamura (1993) (hereinafter referred to as FK) 
have studied dynamical diffraction by revising the 
conventional dynamical theory. They have discussed 
diffraction effects for which the real part of the 
X-ray polarizability is zero. In the Bragg case, the 
rocking curve shows narrower width than that 
having no absorption effect [Kato (1992) showed the 
same results theoretically]. In the Laue case, the 
rocking curve shows PendellSsung fringes induced by 
the imaginary part of the scattering factor. 

This paper, based on the FK theory, studies 
rocking curves and integrated reflecting powers in 
the Laue case for various ratios of the real and 
imaginary parts of the X-ray polarizability. 
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2. Theoretical basis 

The Fourier transform of the X-ray polarizability, Xh 
(47r times the polarizability), is expressed by 

/~h = /~hr "1- ixhi" (1) 

Here, Xhr = Ixhrl exp (iahr) is the Fourier transform of 
the real part of the X-ray polarizability and Xhi = 
[xhil exp (iahi) is that of the imaginary part. The 
phase difference is given by 

(~ = O l h i -  Oghr. (2) 

In the following, it is convenient to define Xh as 

IX rl = + ix ;i 2. (3) 
We also define the following parameters: 

k = Ixhrl/lxh l, (4) 

b = 2 " 2 / ( k  = + 1) ' '2=  2"21xh,I/  , (5) 

p = k/(k 2 + 1) = Ix,,,llx,,il/-£h = (6) 

and 

g = go/(k 2 + 1) '/2 = , ~Oi /Xh ,  (7) 

where go = Xoe/Ixhi[. The parameters b, p and g are 
finite even if k becomes infinite (no absorption). 

The diffracted and transmitted intensities Ph and 
Pa in the Laue case are given by 

Ph/Po = exp ( - /zH ' ) (1  - 2p sin 6){sin2(sH Re L '/2) 

+ sinh2(sH Im Z'/Z)}/lt'/212 (8) 

and 

Pa/Po =exp  ( -  l~H'){[(IL'/Zl2 - W 2 - g,2) 

x cos (2sH Re L 1/2) 

+ (iL.nl2 + W z + g,2) cosh (2sH Im L'/2)]/2 

- (g' Re L '/2 - W Im L ~/2) sin (2sH Re L '/z) 

- (W Re L '/2 + g" Im L 1/2) 

x sinh(ZsH Im L'/z)}/]L~/212. (9) 

Here, Po is the incident X-ray intensity, H the crystal 
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thickness and /z the mean linear absorption coeffi- 
cient. The parameter g'  is related to g by 

g'  = g sin 0 cos fl/lcos 01 cos 0211/2. (10) 

In (8) and (9), s and H'  are given by 

s = "n'kor'~h/Icos 01 cos 0211/2 (11) 

and 

H'  = H c o s  0 sin fl/(cos 01 cos 02). (12) 

The real part of  the wave vector in a crystal is kor 
and the Bragg angle is 0. The angles 0~, 02 and fl are 
those of the transmitted beam, the diffracted beam 
and the scattering vector h, respectively, with respect 
to the surface normal directed inwards. 

txH' = - 2sHgo/(k 2 + 1) ~/2. (13) 

The deviation parameter W gives the measure of  
difference from the exact Bragg condition and is 
given by 

W =  - Xo sin 20/(Icos 0~ cos 0211~2ko~h). (14) 

The distance from the exact Bragg condition in the 
reciprocal-lattice space is Xo, the definition of which 
is given in equation (9) of  FK. It is noted that W 
does not diverge if-Xh ~ O, i.e. one of  Xh; and Xh~ can 
be zero. The parameter L is given by 

IZ,"=I == (a 2 + BE) I'~, (15) 
Re L 1/2= (A 4-IL1'212)1'2/21'2 (16) 

and 

Im L 1/2= ___(-A + IL"212)"2/2 ''2. (17) 
In (17), the positive sign is chosen for g ' W - p  cos & 
> 0 and the negative sign for g ' W - p  cos t~ < 0. 
Here, A and B are given by 

A = W 2 + l - g ' 2 -  b 2 (18) 

and 

B = 2(g' W + p cos 8). (19) 

In the following, we treat only the tr-polarization 
mode. For  the rr-polarization mode, we obtain simi- 
lar formulas by multiplying the polarization factor 
Icos 201 by Xhr and Xhe. In addition, we assume that a 
crystal has a center of symmetry and 6 is either 0 or 
rr. Then, Xh in (3) is equal to the absolute value of 

Ixhl- 

3.  R o c k i n g  c u r v e s  

We calculated rocking curves as functions of W in 
the symmetric Laue case where # = rr/2 and there- 
fore g'  = 0. Fig. 1 shows rocking curves Ph/Po for k 
-- 0 (xh ,  -- 0),  k = 1 (Ixh, I--IXh/I)  and k = oo (Xh, = 0) 

when s H = T r ,  g o = - I  and & = 0 .  The rocking 

curves of  the diffracted beam are symmetric with 
respect to W = 0, regardless of  the value of k. 

In the case where k = oo, the rocking curve shows 
the well known form of conventional dynamical 
theory. Ph/Po becomes zero at W = 0 because s H  = 
rr. In the case where k = 1, Ph/Po is about 0.25 at W 
= 0, owing to the abnormal transmission effect. In 
the case where k = 0, Ph/Po is about 0.25 at W = 0, 
which is the result of  a new type of  abnormal 
transmission effect pointed out by FK. The 
Pendellrsung fringes are observed in all the curves. 
When k decreases from positive infinity to zero, 
the amplitude of the Pendell6sung fringes gradually 
decreases. However, even for k = 0, the fringes are 
observed. 

Fig. 2 shows the rocking curves of  the transmitted 
beam Pd/Po for k = 0 ,  0.5, 1.0, 5.0 and oo. The 
rocking curves are symmetric with respect to W = 0 
for k = 0 and oo but not symmetric for other values 
of k. The asymmetry is largest when k = 1. When k is 
increased from 0.5 to 5.0, the maximum peak of each 
curve moves to the lower-W side from 0 to - 1 and 
the minimum point moves similarly from 2 to 1. 
When k = 0, the abnormal transmission around W = 
0 becomes conspicuous. In all the curves in Fig. 2, 
the Pendell6sung fringes are observed. The amplitude 
of the fringes decreases when k is decreased, which is 
a similar variation to that observed in Fig. 1. 
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Fig. 1. The rocking curves of the diffracted beam as functions of 
W for k = 0 (thick solid line), k = 1 (thin solid line) and k = oo 
(dashed line), sH = 7r, go = - 1 and & = 0. 
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3.1. Nontransparent effect 

In Fig. 3, the rocking curves of the transmitted 
beam Pa/Po for k = 1 are shown by the solid lines 
and values of exp ( - / x H ' )  due to the mean absorp- 
tion are shown by dashed lines for the three sH 
values. In the negative region of W, the Pa/Po are 
larger than exp ( - / z H ' ) ;  the abnormal transmission 
effect is observed. In the positive region of W, the 
Pa/Po are smaller than exp ( - / x H ' ) ;  the abnormal 
absorption effect is observed. A sharp decrease in 
Pa/Po is observed in each curve in Fig. 3, when 
neither Xhr nor Xhi is zero. The minimum intensity is 
much smaller than that expected as the abnormal 
absorption effect. We refer to this as a nontran- 
sparent effect. It occurs for sH = 1.80, 3.49 and 4.70 
when k = 1. We label the minimum intensities 
appearing with increasing sH successively as the first 
and second nontransparent minima and so on. 

The nontransparent effect is obtained for a par- 
ticular combination of k, W and sH. Fig. 4(a) shows 
the plots of k versus sH when the first to the fourth 
nontransparent minima are obtained. Each dot rep- 
resents a point at which a nontransparent minimum 
is observed. Fig. 4(b) shows similar plots between k 
and W. 

The nontransparent effect is interpreted as follows. 
In the two-beam approximation of dynamical 

theory, two branches of the beams are excited in a 
crystal. If we denote the amplitudes of the trans- 
mitted beams for these two branches D~o ° and D~ 2), 
respectively, and the normal components of the wave 
vectors k~z ) and KOz'-(2)., then the transmitted beam Do is 
expressed by 

IDol = ID o'  exp ( -  27rik~z)Z) + O~o 2) exp ( -  27rik~)z)l 

= [ exp ( - 2rriko,z cos 0)[ 

x [{(W+ L'/2)exp [sz(g- Im Ll/Z)] 

x exp (isz Re L I/z) 

- ( W -  L l/z) exp [sz(g+ Im Ll/2)] 

x exp ( -  isz Re L~/2)}/(2L 1/2) 

=[exp(-27rikorzcosO) IDo,+iDoi. (20) 

Here, D0, and Doi a r e  the real and imaginary parts, 
respectively, of the last equation and z is the depth 
from the surface. Since the first term of the right- 
hand side of the last equation is 1, the nontran- 
sparent effect should be related to the second part. 
We calculate Do,, Ooi and IDol as functions of W for 
sH=l .5 ,  1.67 and 1.84 when g 0 = - I  and k = 2 .  
The results are shown in Fig. 5. The solid lines are 
Do,, the dashed lines are Do; and the dotted lines are 
IDol. For sH = 1.5, both Dor and Doi are positive at 
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Fig.  2. T h e  r o c k i n g  curves  o f  the  t r a n s m i t t e d  b e a m  for  k = 0 ( th ick 
sol id line), k = 0.5 ( d a s h e d  line), k = 1 (sol id line), k = 5 ( thin 
sol id line) a n d  k = oo ( thin d a s h e d  line), sH = ~r, go = - 1 and  
----0. 
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Fig. 3. The rocking curves of  the transmitted beam for sH = 4.70 
(thick solid line), sH = 3.49 (solid line) and sH = 1.88 (thin solid 
line), k = I, go = - 1 and & = O. The three dashed lines represent 
exp (-  p.H') for the above three values of sH. 
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the intersection A of the curves of Do, and Dog. For 
sH = 1.84, they are negative at the intersection. For 
the intermediate value sH = 1.67, they are zero at the 
intersection. The transmitted intensity should be zero 
when both Do, and Dog are zero. This corresponds to 
the first nontransparent minimum. For larger W, Do, 
and Dog curves intersect at the i9oint B in Fig. 5 
where neither Do, nor Dog is zero. When sH is further 
increased, both Do, and Dog become zero at another 
point, which corresponds to the second nontrans- 
parent minimum. 

It is noted that the diffracted beam does not show 
any corresponding enhancement or reduction in 
intensity when the nontransparent effect is observed 
in the transmitted beam. 

3.2 Asymmetric reflection 

Kishino, Noda & Kohra (1972) theoretically 
showed that the abnormal transmission intensity in 
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Fig. 4. The conditions in which the nontransparent  effect occurs. 
(a) The relation between k and sH. (b) The relation between k 
and W. The circles show the calculated values; the lines are just 
given as a guide for the eye. 

the asymmetric reflection case is larger than that in 
the symmetric case. By using Cr Ka X-radiation, 
they measured the rocking curves of the diffracted 
and the transmitted beams from silicon in the asym- 
metric reflection case and confirmed the enhance- 
ment of the intensity. Their theoretical treatment is 
complicated and not analytical. In contrast, the 
present treatment is simple and provides an easy way 
to understand the phenomenon. 

To examine the effect pointed out by Kishino et al. 
(1972), we calculate rocking curves of Ph/Po and 
Pd/Po in the asymmetric reflection case for k = 0 and 
1. We define the asymmetric factor as 

a = cos 01/cos 0 2 . (21) 

In the symmetric case, a = 1. 
In the case where k = 0, the calculated rocking 

curves of Ph/Po and Pd/Po a r e  shown in Fig. 6 for a 
= 0.4, 1.0, 2.0 and 10.0. The rocking curves of both 
transmitted and diffracted beams are symmetric with 
respect to W-- 0. The peak intensity of the diffracted 
beam Ph/Po is a maximum of 0.25 for a = 1. The 
peak intensity of the transmitted beam, on the other 
hand, becomes large with increasing a; it is 0.85 at W 
= 0 when a = 10.0, showing conspicuous abnormal 
transmission. 

In the case where k = 1, the calculated rocking 
curves of Ph/Po and Pd/Po are shown in Fig. 7. The 
rocking curves of both Ph/Po and Pd/Po are asym- 
metric with respect to their peaks, except for a = 1 of 
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Fig. 5. The amplitudes of  the transmitted beam Do, (solid lines), 
Doi (dashed lines) and IDol (dotted lines) for sH = 1.50 (upper 
panel), sH = 1.67 (middle panel) and sH = 1.84 (lower panel); k 
=2 ,  go = - l a n d S = 0 .  
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PhlPo. The maximum peak intensity of PhlPo is 0.25 
for a = 1, just the same as in the case of k = 0 in Fig. 
6. The peak intensity of the transmitted beam is 
similar to that for k = 0; the peak becomes larger 
with increasing a. The peaks of both the diffracted 
and the transmitted beams shift to the smaller value 
of W with increasing a. 

The abnormal intensity enhancement is the same 
effect as pointed out by Kishino et al. (1972) when 
neither the real nor the imaginary part of the polari- 
zability is zero. We have also shown that the 
abnormal intensity enhancement of the transmitted 
beam is observed even when the real part of the 
X-ray polarizability is zero (in Fig. 6). 

4. Integrated reflecting power 

According to FK, the angle-dispersive reflecting 
power Rh in the Laue case is given by 

Rh = [(cos 02/cos 001/2/sin 20]-~hf(PJPo)dW. (22) 

It is noted that the prefactor is Xh instead of Ix rl. In 
the conventional formulas (Zachariasen, 1945; 
Hirsch & Ramachandran,  1950; Batterman & Cole, 
1964; Miyake, 1969), [Xhr[ is used and the integrated 
reflecting power is zero if [xhrl is zero even when Ix~,l 
is not zero. In a study of Pendellr"sung fringes using 
spherical wave theory, Kato (1968) pointed out that 
the imaginary part of the structure factor should 
come in the prefactor of the integrated reflection 
intensity. Saka & Kato (1986) used [Fh] as the pre- 
factor of the integrated reflecting power and 
determined the crystal structure factor Fh of silicon 
precisely. It is obvious from Fig. 1 that the diffracted 
intensity Ph/Po is not zero and the integrated reflec- 
ting power is not zero when k = O, i.e. Xhr = O. 

In Fig. 8, R~ = f (Ph /Po)dW in the Laue case is 
shown as a function of sH for various k. The integral 
Rh w is small for small k; Rff for k = 0 is one order of 
magnitude smaller than that for k = ~ ,  when sH is 
larger than 3. The Pendellr"sung fringes are clearly 
seen as a function of sH for k larger than 1. 
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Fig. 6. The  rocking curves o f  the diffracted beam (upper  panel) 
and the t ransmit ted beam (lower panel) for  the asymmetr ic  
factor  a = 10.0 (thick solid lines), a = 2.0 (dot ted lines), a = 1.0 
(thin solid lines) and a = 0.4 (dashed lines) in the case where k 
= 0, go = - 1, 8 = 0 and s H =  10. 
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Fig. 7. The  rocking curves o f  the diffracted beam (upper  panel) 
and the t ransmit ted beam (lower panel) for  the asymmetr ic  
factor  a = 10.0 (thick solid lines), a = 2.0 (dot ted lines), a = 1.0 
(thin solid lines) and a = 0.4 (dashed lines) in the case where k 
= 1, go = - 1, 8 = 0 and s H =  10. 
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5. X-ray polarizability apparent in the PendellEsung 
fringe 

In the rocking curves shown in Figs. 1 and 2, the 
distance A W between two adjacent peaks of 
Pendelld'sung fringes can be obtained. From (8) or 
(9), we have the relation 

sHAW = rr. (23) 

By inserting this equation into (11) and approxi- 
mately kor by Ko (the wave number in vacuum), we 
obtain 

Yh = ]COS 01 COS 0 2 / ( K o H A W ) .  (24) 

If we determine all the values of the right-hand side 
of (24) in the measurement of the Pendell6"sung 
fringes (Teworte & Bonse, 1984), we can determine 
Xh- So far, IXhrl instead of Xh was supposed to be 
determined from the measurement of Pendellf'sung 
fringes, which is incorrect as shown above. When the 
ratio Ix ,l/Ix ,l > 10, we can determine IXhr[ with an 
accuracy better than 1%. However, to determine I,t'hr[ 
near the K-absorption edge, we must take the effect 
of Ixh,I into account. 

Similarly, Xh instead of IX rl is to be obtained from 
the measurement of Pendelld'sung fringes as a func- 
tion of sH in the integrated reflecting powers shown 
in Fig. 8. The Pendelld'sung fringe is obtained only 
when ]Xhr[ is larger than Ixh;I (k > 1). To determine 

by measuring PendellO'sung fringes, we have first 
to determine Ix ;I and then to subtract the Ix ;I from 
the measured Zh. 

6. Summary 

We have studied dynamical diffraction in the Laue 
case by fully taking account of the Borrman absorp- 
tion in both the symmetric and asymmetric cases. In 
the symmetric reflection case, all the rocking curves 
of the diffracted beam are symmetric with respect to 
W = 0. The rocking curves of the transmitted beams 
are symmetric only for k = 0  and oo. They are 
asymmetric for other values of k and the asymmetry 
is largest for k = 1. 

We have found a nontransparent effect: the trans- 
mitted beam intensity is zero for a certain combina- 
tion of k, W and sH, except for k = 0 and k = ~ .  We 
have discussed the relations between k and sH and 
between k and W that produce the effect. 

The period of the Pendell6"sung fringes is a func- 
tion of ~ ,  rather than IX,,rI" TO determine ]ghr[ from 
this period, we must subtract the contribution of 
[gh~], which is especially important near the K- 
absorption edge. In the determination of the struc- 
ture factor of silicon from the Pendell6sung tinges in 
the integrated reflecting power (Saka & Kato, 1986), 
the relative error was estimated to be in the range 
5 x 10 -6 to 1 x 10 -5. The contribution of Ixh;I is in 
the range 10 -5 to 10 -4 and is quite comparable to 
the error. For the same reason, the contribution of 
Ixh;I must be subtracted in the determination of 
structure factors by the use of white X-ray Pendell- 
6"sung fringes (Takama, Iwasaki & Sato, 1980) and 
by the use of X-ray resonant scattering Pendell6sung 
fringes (Fukamachi, Yoshizawa, Ehara, Kawamura 
& Nakajima, 1990). 
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Fig. 8. R~' of the diffracted beam as a function of sH for several 
values of k. 
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